
TrackReconstruction R package Vignette

Brian Battaile

September 14, 2024

1 Introduction

Dealing with the quantities of data from tags that collect magnetometer and accelerometer data is perhaps
the greatest di�culty involved in track reconstruction. The raw data �les from the loggers are large and as
human readable text are often too large to import into free text editors let alone then manipulate. You will
want a computer with large amounts of memory and 64bit R. The more memory you have, the larger the data
�les you can process without having to split them up. There are two tasks that may require data subsetting,
the �rst is eliminating periods outside the times that you want to do the track reconstruction, such as when
a seal is on land. The second is using chunks of data that are small enough for the TrackReconstruction
package to handle. I have written R code to deal with both of these tasks, but depending on the length of
time data are collected and the sampling rate, and your computers abilities, data sets may be too large for
R to import or then manipulate for either of these tasks. In case you are unable to import your data into
R and remove unwanted sections or subset it, I wrote some PERL code that I used for both of these tasks
that can handle most any sized data set e�ciently. I have put the PERL code in the last section of this
document as an Appendix.

My desktop is 64bit with 16GB of RAM. The data I use is triaxial magnetometer and accelerometer and
DateTime sampled at 16Hz with included depth information. R 3.0.2 was able to import a 3GB raw data
�le (46 million lines, about 1 month) for trimming on my machine and I was successfully able to process a
1.2GB �le that consists of 18 million lines (a 13 day trip) using the TrackReconstruction package in a single
chunk. I have however also successfully reconstructed elephant seal trips that last over 3 months but with
considerable subsetting with PERL. I also recommend a solid state drive large enough to handle the many
data �les, as reading and writing many �les of this size can be time consuming.

For better or for worse, I work on a Windows machine, I'm sure most of the concepts here are adaptable
to Mac and Linux machines, but the coding and interfaces are di�erent enough to make this more of a guide
as opposed to a copy and paste vignette when it comes to DOS and R �le management code.

1.1 Date and Time in R and TrackReconstruction

Dealing with date and time data in R has been one of THE most frustrating things I have ever done. One
of the main issues is the many formats date and time data come in. The functions in TrackReconstruction
compare the date and time data (merged as a DateTime column) to split data sets and georeference the
tracks to force them to go through GPS points. I have chosen to do this using the DateTime as a string
of characters and matching as opposed to using the DateTime as an actual date and time. Perhaps this is
the wrong way to do things but it's how I have done them, I'm open to suggestion. What this means is
that the date and time �les from di�erent tags must be in the same format by the time you use the data in
TrackReconstruction functions. Here is some R code I recommend.

This is something I put at the top of most of my R scripts, when R imports data, it defaults to importing
data that is not numeric as factors. This imports data as a character string. Really, the only time I ever
want data as a factor is when I'm using it to build statistical models.

options(StringsAsFactors=FALSE)

If you don't want this as a global change to your options, you can always put the StringsAsFactors=False
as an option in your read.table for importing the data into R.

1

The following code should start you o� on changing the format of date and time data if it is not already
the same.

DT<-paste(as.character(TagFile$Date),as.character(TagFile$Time))

DateTime<-strptime(DT,format="%Y-%m-%d %H:%M:%S") #default code for format argument

DateTime<-as.character(DateTime)

You shouldn't need the as.character function if you used the StringsAsFactor=FALSE, but in my experi-
ence.....it never hurts.

Spend some time with the strptime help page as that will help you translate the code "

options(digits.secs=4)

DT=c("Jul/12/2009 05:45:35.0625","Jul/12/2009 05:45:35.1250","Jul/12/2009 05:45:35.1875")

DateTime1<-strptime(DT,format="%b/%d/%Y %H:%M:%S")

DateTime1

DateTime2<-strptime(DT,format="%b/%d/%Y %H:%M:%OS")

DateTime2

1.2 Subsetting the data

The �rst step is to determine when you want to begin and end the track reconstruction. For my marine
animals it began and ended when the animal entered and exited the water, it is important to have accurate
location (GPS) information for these times as well. These two times and locations bookend the analysis.
The other times that most people will hopefully have are times when known locations (GPS �xes) were
taken between the begin and end times to periodically georeference the track. Why this is important will be
discussed later.

Prior to running this �rst bit of code, you should understand the principles laid out in the following
article
Shepard E.L.C., Wilson, R.P., Halsey, L.G., Quintana, F., Laich, A.G., Gleiss, A.C., Liebsch, N., Myers,

A.E., Norman, B. (2008) Derivation of body motion via appropriate smoothing of acceleration data.
Aquatic Biology 4:235-241

as it describes how to determine the Running Mean Length (RmL) variable. While RmL is part of the
DeadReckoning function code, you need to understand what it does now because this tells us how much data
we need to keep before the beginning and after the end of the dataset so the running mean function can
calculate a number starting with the �rst data point when the animal enters the water and the last data
point before the animal leaves the water. Here, it is set to the sampling frequency, and that may be a place
to start but it also may be inappropriate for your animal. This same consideration must be made for any
subsetting of the data prior to applying the DeadReckoning function, for example, if subsetting data between
GPS locations.

This �rst set of R code takes a raw text data �le and subsets it by begin and end times, which can be a
trip or a portion of a trip such as between GPS locations or however you want to split it. There is a function
in the TrackReconstruction package called Splitter that does this. This example uses a data set from a
Wildlife Computers Daily Diary tag. Their instrument helper program exports data ready for importation
into R. Simply export the entire data �le with the data channels of interest. This code will write subsetted
data �les to the working directory. The Trip and Section arguments are for naming the �les.

options(digits=15,digits.secs=4) #To visualize the fractions of seconds %H:%M:%OS3

setwd("G:\\Bog 2009 Toughbook\\2009 Data\\Daily Diary\\Bogoslof\\Cu09BG03")

FullFile=read.table("09A0572.tab", header=T)

colnames(FullFile)=c("DateTime","Depth","MagSurge","MagSway","MagHeave","AccSurge",

"AccSway","AccHeave","Wet_Dry")

#Times when the animal entered and exited the water

Begin<-as.POSIXct(c("2009-07-16 18:26:14","2009-07-23 19:08:24","2009-07-29 22:53:43"

,"2009-08-06 04:26:13"),tz="GMT")

End<-as.POSIXct(c("2009-07-22 06:21:11","2009-07-28 16:15:49","2009-08-04 14:36:26",

2

"2009-08-11 01:22:16"),tz="GMT")

RmL=2

Splitter(FullFile, Begin, End, RmL,Hz, Animal01,Trip="Trip")

It is important to have the DateTime in the same format for the biologged �les and the Begin and End
�les. If the time and date are in di�erent columns or the formats are di�erent you may need to add some
code that looks like this. Or just format the Begin and End �les to match the DateTime on the FullFile,
whichever is easiest.

DT<-paste(as.character(FullFile$Date),as.character(FullFile$Time))

tt<-strptime(DT,format="%Y/%m/%d %H:%M:%S")

DateTime<-as.POSIXct(tt,tz="GMT")

1.3 File management in R

This subsection is really designed for those instances where you end up with many data �les, this could be
subsets of single animal tracks or if you have many animals. For those of you that can process your entire
tracks without breaking them up and don't have many animals, or just want to do a test run, you can
probably just skip or skim this section. However, if you have more than a handful of �les to deal with, this
short section may be worth your while.

HELPFUL HINT�it is best to number �les with 001.csv instead of just 1.csv as R will order things
correctly if you have leading 0's in your �le numbers. e.g., if you have 100's of segments, 001.csv, if you have
10's of segments, 01.csv will be �ne. You should label all folders this way as well. Here is a snippet that I
use to name trip section data tables created in R.

num=ifelse(num<10,paste("0",num,sep=""),num)

num=ifelse(num<100,paste("0",num,sep=""),num)

num=ifelse(num<1000,paste("0",num,sep=""),num) # etc.

filename=paste("xyz-",num,".csv",sep="")

write.table(xyz, file = filename, sep="\t",row.names=FALSE)

That should get you �les that can now be used in TrackReconstruction. But now that you have ALL
these data �les, you need some R code that automates this for you so you can go home at night while the
computer works for you. The following is an example of setting up and importing all the data �les to do the
pseudotrack calculation using the DeadReckoning function in TrackReconstruction.

This is an example of the path to one of my raw between-GPS-points �les
C:\filepath\Bogoslof\Cu09BG01\trip 1\01-232.csv

Animals in separate folders, the code is Callorhinus Ursinus 2009 BoGoslof animal 01
C:\filepath\Bogoslof\Cu09BG01

Animal trips are in separate folders
C:\filepath\Bogoslof\Cu09BG01\trip 1

and between GPS segments are separate �les
C:\filepath\Bogoslof\Cu09BG01\trip 1\01-232.csv

This �rst line of code uses regex wildcards to �nd all possible �le paths corresponding to all the trips
taken by all my animals. Fill in the "�lepath" with the rest of your �lepath to your data.

dirpath=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","trip*"))

If I had 10 animals that each went on 2 trips this would result in a vector of 20 �le paths that can be accessed
individually with a loop through dirpath[j] where j=1-20. A similar structure will get us the path to any
data that we need, such as the coe�cients for normalizing the accelerometer and magnetometer sensors for
each tag, which I named "betas" (this �le is also made with the Standardize function which is described
later).

dirpathbetas=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","trip*","betas*"))

3

A similar structure will get us the path to the declination and inclination data for each trip.

dirpathdecinc=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","trip*","decinc*"))

Looping through each of these.

for(j in 1:length(dirpath))

{

#load declination, inclination and tag standardization data

decinc=read.table(dirpathdecinc[j], fill=TRUE, sep="\t", header=TRUE)

betas=read.table(dirpathbetas[j], fill=TRUE, sep="\t", header=TRUE)

#We use a similar structure to determine paths for each between-gps segment,

#for my BG_01_01 animal example, this will be a vector of length 233, this

#vector will be in numerical order IF you put 0s in front of your numbers.

dirpath2=Sys.glob(file.path(dirpath[j],"0*-*.csv"))

setwd(dirpath[j])

for(i in 1:length(dirpath2))

{

#load the file into R, the "sep" indicates how your columns are delimited

#\t is regex for tab, use sep="," for comma seperated files.

rawdata=read.table(dirpath2[i], fill=TRUE, sep="\t", header=TRUE)

#save the number of the file

num=as.numeric(strsplit(strsplit(dirpath2[i],split="-")[[1]][2],split=".csv")

[[1]][1])

#If you did not originally take my helpful advice, this code will add leading 0s

num=ifelse(num<10,paste("0",num,sep=""),num);num=ifelse(num<100,paste

("0",num,sep=""),num)

note that RmL units are seconds in the DeadReckoning function

xyz<-DeadReckoning(rawdata, betas, decinc,Hz=16, RmL=2, DepthHz=1, SpdCalc=1,

MaxSpd=NULL)

#Create a file name

filename=paste("xyz-",num,".csv",sep="")

filename2=paste("xyz-",num,".RData",sep="")

#Write the file in .csv or .txt

write.table(xyz, file = filename, sep="\t",row.names=FALSE)

#Write the file in *.Rdata, this is good for compressed files but you will

#not be able to view as human readable in a text editor, only save one of

#*.csv or *.RData, no point in saving both.

#save(xyz,file=filename2) # saves in *.Rdata format

}

print(j) #This just lets me know where the program is

}

So, without all the comments it looks like this

dirpath=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","GPS segments","trip*"))

dirpathbetas=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","GPS segments","trip*","betas*"))

dirpathdecinc=Sys.glob(file.path("C:\\filepath\\Bogoslof","*","GPS segments","trip*","decinc*"))

for(j in 1:length(dirpath))

{

decinc=read.table(dirpathdecinc[j], fill=TRUE, sep="\t", header=TRUE)

betas=read.table(dirpathbetas[j], fill=TRUE, sep="\t", header=TRUE)

dirpath2=Sys.glob(file.path(dirpath[j],"0*-*.csv"))

setwd(dirpath[j])

for(i in 1:length(dirpath2))

{

4

rawdata=read.table(dirpath2[i], fill=TRUE, sep="\t", header=TRUE)

num=as.numeric(strsplit(strsplit(dirpath2[i],split="-")[[1]][2],split=".csv")[[1]][1])

num=ifelse(num<10,paste("0",num,sep=""),num);num=ifelse(num<100,paste("0",num,sep=""),num)

xyz<-DeadReckoningR(rawdata, betas, decinc,Hz=16, RmL=2, DepthHz=1, SpdCalc=1, MaxSpd=NULL)

filename=paste("xyz-",num,".csv",sep="")

#filename2=paste("xyz-",num,".RData",sep="")

write.table(xyz, file = filename, sep="\t",row.names=FALSE)

#save(xyz,file=filename2)

}

print(j)

}

I recommend setting up something like that for the DeadReckoning and GeoReference and possibly the
Standardize and GPStable functions as well.

If you want to reconstitute your track into a single �le at either the deadreckoning or georeferencing
phase, insert code that looks something like this where the write.table line (or save) is in the above code.
The DeadReckoning function trims o� the extra bits of data from each end that was required to calculate
the running means so they SHOULD match together nicely

if(i==1)

{

write.table(xyz, file = filename, sep="\t",row.names=FALSE)

write.table(xyz, file = "xyzmaster.csv", sep="\t",row.names=FALSE)

}else{

write.table(xyz, file = filename, sep="\t",row.names=FALSE)

write.table(xyz, file = "xyzmaster.csv", sep="\t",row.names=FALSE,col.names=F,append=T)

}

1.4 Thinning the data

If you want to reduce (thin) the size of your master �le this can be trivial and it can also be di�cult. If you
have missing data, things become more di�cult, if you don't have missing data, the following R code works
well.

The following is some R code to reduce �les by every xth number of rows, the "by=x" controls this, so
in this case I am taking every 8th row of data.

dataout<-datain[seq(1,nrow(datain),by=8),]

You could incorporate this into the " batch" �les using DeadReckoning or GeoReference to save smaller �les.

2 Using the TrackReconstruction package

2.1 Standardize function

So what we have done so far is get the data ready for import into the TrackReconstruction package. To start
with the TrackReconstruction package, the �rst thing we need to do is normalize the magnetometer and
accelerometer data between -1 and 1 with the Standardize function. The �rst part of this is to determine the
orientation of your sensors and they should follow the right hand rule. The right hand rule is as follows, hold
your hand in front of you and point your thumb straight up. Next point your index �nger away from you
and �nally point your middle �nger to the left so that you now have your �ngers as vectors pointing at right
angles to one another. These �ngers indicate the top, front and left side of the tags. When these sides of
the tags are pointing towards the earth, you accelerometers should be at a maximal positive static reading,
which is gravity. When they are pointing away from the earth, they should be at their minimal reading. The
same goes for the magnetometers but they will be maximal (when in the northern hemisphere) when they

5

are pointing north and at the angle of inclination of the magnetic �eld (the angle it enters the earths surface)
which is di�erent all around the globe. I am not sure what the readings should be in the southern hemisphere
(pointing south and towards the earth at the angel of inclination or towards the north and at 180 degrees
opposite to the angel of inclination?). You need to determine what the maximal and minimal readings for
the tags are where the animals will be. This can be done by rotating the tags in all three dimensions while
facing magnetic north. Optimally this is done with a tool that allows you to stop every 10 degrees or so and
hold the tag steady for 5 seconds. This is tedious but will pay o� if you need a better model of your sensors
than the simple linear model the Standardize function provides (such as a logistic). If your animal moves far
enough for the angle of inclination to change signi�cantly on their feeding trip, you will want to do multiple
standardizations for the magnetometers. You can tell this occurs by looking at your full magnetometer data
set and if it gradually gets larger or smaller as the animal moves away from the original place of tagging,
and then returns to the same magnitude as the animal returns home. Elephant seals and albatross will likely
do this. If your animal tends to move enough so that the tag will rotate around to most positions, you can
subset your data into sections where the magnetometer max and min do not noticeably change and simply
take the max and min for that section. Do this for each section. These max and min you will put into the
Standardization �le.

As an example, this is the standardization data required for the tag that took the rawdataXX.Rdata
�les supplied with the TrackReconstruction package. The �rst six arguments indicate that all but the sway
magnetometer (side or middle �nger on the right had rule) on my tag was oriented according to the right
hand rule. See the help �le for the Standardize function for details on the parameter orientation.

> library(TrackReconstruction)

> betas<-Standardize(1,1,-1,1,1,1,-57.8,68.76,-61.8,64.2,-70.16,58.08,-10.1,9.55,

+ -9.75,9.72,-9.91,9.43)

> betas

MagSurge MagHeave MagSway AccSurge AccHeave

B0 Intercept -0.08659924 -0.01904762 -0.09419838 0.02798982 0.001540832

B1 Slope 0.01580278 0.01587302 -0.01559576 0.10178117 0.102722137

AccSway

B0 Intercept 0.02481903

B1 Slope 0.10341262

As you can see, this outputs the slope and intercept of the line that normalizes the millivolt output of
the tags to between -1 and +1.

2.2 GapFinder function

Often, you want to see if there are gaps in your data and where they are, if there are signi�cant sized or
lots of gaps the track reconstruction becomes less reliable. The GapFinder function �nds all the gaps in
your data greater than your desired window, though it defaults to 1 second. I recommend again setting up
a function that will go through all your �les and using some code such as that below to write a �le if a gap
has been found in that data �le.

> data(rawdatagap)

> gaps<-GapFinder(rawdatagap, timediff = 1, timeformat = "%d-%b-%Y %H:%M:%S")

> if(gaps[1,1]!=0) write.table(gaps, file = "gaps-1.csv", sep=",",row.names=FALSE)

> head(gaps)

Line TimeDiffinSec Time1 Time2

1 10801 24600 2009-07-19 01:32:23 2009-07-19 08:22:23

2 10802 24563 2009-07-19 08:22:23 2009-07-19 01:33:00

3 0 0 0 0

So this tells you what line of the data �le that gap occurs and how large they are. In this example, there
was a 37 second gap and an aberrant time of 8:22:23 was inserted in the gap....tags can and will do strange
things.

6

2.3 GPStable function

The GPStable function formats your GPS latitude and longitude data �le into something directly importable
into the GeoReference function and calculates the distance between points, bearing from one point to the
next in degrees and radians and converts the latitude and longitude degrees into radians. All navigation
functions use radians. The CalcBearing, and CalcDistance functions are called in the GPStable function.

> data(gpsdata02)

> gpsformat<-GPStable(gpsdata02)

> head(gpsformat)

DateTime Latitude Longitude LatRad LongRad BearingRad

1 21-Jul-2009 09:30:00 53.93111 -168.0349 0.9412755 -2.932762 0.09180597

2 22-Jul-2009 01:23:39 53.93306 -168.0346 0.9413094 -2.932757 -0.47828271

3 22-Jul-2009 01:45:09 53.94334 -168.0436 0.9414889 -2.932915 -1.46424471

4 22-Jul-2009 02:07:13 53.94441 -168.0607 0.9415076 -2.933213 -1.36558342

5 22-Jul-2009 02:36:46 53.94956 -168.1028 0.9415975 -2.933948 -1.88773642

6 22-Jul-2009 02:56:31 53.94757 -168.1132 0.9415627 -2.934128 -1.47080487

BearingDeg DistanceKm

1 5.260095 0.0000000

2 332.596419 0.2170772

3 276.104958 1.2876086

4 281.757833 1.1241930

5 251.840670 2.8147816

6 275.729088 0.7123356

2.4 DeadReckoning function

The DeadReckoning function is one of two primary functions in the TrackReconstruction package. See the
help page for detailed information on the DeadReckoning function including the Hz, RmL, DepthHz and
SpdCalc parameters. In short the function tries to deal with the di�erent sampling rates for the acceleration,
magnetometer, depth and speed channel, or if there is no speed channel, the various ways speed may be
estimated. In addition to the raw data �le, we also need the Declination and Inclination for the study area
which can be gotten at the time of writing from here
http://www.geomag.bgs.ac.uk/data_service/models_compass/wmm_calc.html

> #get declination and inclination data for study area

> decinc<-c(10.228,65.918)

> #example data set with start and end times corresponding to the first and seventh GPS

> #fixes from the gpsdata02 data set, plus additional rows=Hz*RmL*0.5 on each end.

> data(rawdata)

> DRoutput<-DeadReckoning(rawdata, betas, decinc, Hz = 16, RmL = 2, DepthHz = 1, SpdCalc=3,

+ MaxSpd=3.5)

and a simple plotting call gives us �gure 1

plot(DRoutput$Ydim,DRoutput$Xdim)

2.5 GeoReference function

The GeoReference function forces the DeadReckoning track to go through the GPS, ARGOS, or other types
of supplemental location measures (such a focal follows) that you might have. If you have none, you could
simply use the start and �nish locations to bound the track. There are only two data sets required for the
GeoReference function and they were created by the DeadReckoning and GPStable functions so we can just
put in the direct results of those functions.

7

Figure 1: Raw Dead Reckoning plot

8

Figure 2: GeoReferenced plot

9

> Georeferenced<-GeoReference(DRoutput,gpsformat[5:6,])

and another simple plotting call gives us �gure 2

plot(Georeferenced$Longitude,Georeferenced$Latitude,pch=".")

points(gpsformat$Longitude[5],gpsformat$Latitude[5],pch="S",col="Red") #Start

points(gpsformat$Longitude[6],gpsformat$Latitude[6],pch="F",col="Blue") #Finish

2.6 GeoRef function

The GeoRef function is a wrapper for the GeoReference function that forces your deadreckoning track
through multiple known locations in series, basically it just loops the GeoReference function through all of
your dead reckoning data and GPS locations.

3 Graphing

3.1 Color Graphing

If you want to do color graphing of the tracks within R I have provided a function to do this but you
will need to get data from the General Bathymetric Chart of the Oceans (GEBCO), or some other raster
bathymetry/elevation data at an appropriate resolution for your project, to create the background map.
http://www.gebco.net.

> require(scatterplot3d)

> require(onion)

> require(RColorBrewer)

> require(lattice)

> library(plotrix)

> library(fields)

> require(rgl)

> library(TrackReconstruction)

> #Import data

> #setwd("G:\\filepath\\gebco_08")

> #bathymetry<- read.table("Gebco1.asc",sep=",",header=TRUE)

> #or get the example data from the package

> data(bathymetry)

> col=gray(0:200/200)

> #format data for graphing

> image.xyz=tapply(bathymetry$Depth, list(bathymetry$Long, bathymetry$Lat), unique)

> #create palatte for depth colors

> Bathymetry.palatte<-colorRampPalette(brewer.pal(9, "Blues"),bias=3)

> image.plot(x=as.numeric(dimnames(image.xyz)[[1]]),

+ y=as.numeric(dimnames(image.xyz)[[2]]),

+ z=image.xyz,

+ col=c(rev(Bathymetry.palatte(100)),#gray(0:20/20),

+ terrain.colors(100)),

+ breaks=round(c(seq(from=min(image.xyz),to=0,length.out=101),

+ seq(from=max(image.xyz)/101,to=max(image.xyz),length.out=100))),

+ ylab="",

+ xlab=""

+ #,smallplot=2 #plots legend off x axis

+)

10

Figure 3: Eastern Bering Sea Bathymetry

11

Often, I am interested in zooming in on a portion of the graph to look at just a section of the track.
Depending on how zoomed in you get, the base graph can look pixelated. To help make the graph look
better, there are some interpolating functions in the library(�elds) that smooth this pixelated look. This
has been incorporated into the Mapper function. If you are concerned with accuracy, this may not be good
for you, but for presentations and visualizing the data where aesthetics matter more than accuracy, this will
look better. See the help �le for the Mapper function and try out the example.

3.2 3D Graphing

If you are interested in doing a 3D graph here is a function to get you started. I have not yet incorporated
this as a function into the TrackReconstruction package as it is simply from the scatterplot3d package. The
GraphLimits function is in the TrackReconstruction package and automatically calculates limits of the graph
in order to minimize the distortion that would occur if R imposed it's default graph limits given the actual
limits of the data.

> data(georef1min01)

> limits<-GraphLimits(georef1min01)

> Sminlat=limits$miny

> Smaxlat=limits$maxy

> Sminlong=limits$minx

> Smaxlong=limits$maxx

> scatterplot3d(georef1min01$Longitude,georef1min01$Latitude,(georef1min01$Depth*-1),

+ color="black",#ifelse(georef1min01$SunTimes==1,"red","black"), shades night

+ #and day if you have the data

+ type="l",

+ lwd=1,

+ #pch=".",

+ highlight.3d=F,

+ angle=55,

+ xlim=c(Sminlong,Smaxlong),

+ ylim=c(Sminlat,Smaxlat),

+ zlim=c(0,-80),

+ zlab="Depth",

+ ylab="Latitude",

+ xlab="Longitude",

+ #x.ticklabs=round(seq(from=Sminlong,to=Smaxlong, by=(Smaxlong-Sminlong)/4),digits=2),

+ #y.ticklabs=round(seq(from=Sminlat,to=Smaxlat, by=(Smaxlat-Sminlat)/4),digits=2),

+ #z.ticklabs=c(-80,-60,-40,-20,0),

+ cex.lab=1,

+ cex.axis=1,

+ cex.symbols=1,

+ #lab=c(3, 4),

+ lab.z=5

+)

That chunk of code resulted in Figure 4.
Next is a cool moveable 3D plotter function from the rgl package. This is not directly embeddable into

a presentation as far as I know but it's good to get an idea of what your data look like. This doesn't make
a Sweave embeddable �gure for this document but the code works (at the time of writing).

library(rgl)

#par3d(FOV=160)

plot3d(georef1min01$Longitude,georef1min01$Latitude,georef1min01$Depth*-1,

12

−168.4−168.2−168.0−167.8−167.6−167.4−167.2−167.0−
80

−
60

−
40

−
20

 0

53.8

54.0

54.2

54.4

54.6

54.8

55.0

Longitude

La
tit

ud
e

D
ep

th

Figure 4: 3Dplot

13

#col=ifelse(georef1min01$SunTimes==1,"red","black"), #daytime related color

#col=terrain.colors(100)[rescale(georef1min01$Speed,c(0,100))] #speed related color

size=.75,

xlim=c(Sminlong,Smaxlong),

ylim=c(Sminlat,Smaxlat),

xlab="Longitude",

ylab="Latitude",

zlab="Depth m"

)

points3d(-168.035,53.931,0,#Bogoslof

#points3d(-170.294,57.107,0,#St.Paul

size=4,

color=c("blue"),

point_antialias=TRUE

)

#play3d(spin3d(axis=c(1,0,0), rpm=6), duration=10)

4 Worm Movie!!!

This is a rather extensive undertaking and requires the animation package which itself requires considerable
e�ort to understand. The animation package can make HTML, GIF, Flash and PDF animations as well as
.mp4, .avi and .wmv videos. Only the HTML animations do not require downloading other free programs
o� the internet so that is what I am going to use as an example here and I will also show how to stitch a
video together. What the animation package does is make a series of graphs that will be put together like an
old school Disney animated movie. Updates of the animation package has caused previously working code
to stop working for me. New versions making old code break is one (of many) VERY frustrating features of
R that makes me scream at my computer and pull my hair. However, I was able to make the code below
work with no problems using R 3.0.2 64bit with animation package version 2.2. The �rst obstacle to tackle
is creating the data base.

4.1 Making the 3D data base array

The �rst thing we need to determine is the time over which the movie will run and a column of DateTime in
the same format as your track relocation data. Looking at the head() and tail() of the three georef1min0X
data sets that come with the package indicate that the data start on July 14, 2009 and end July 28, 2009.

This following code creates a vector of times from midnight July 14 to midnight July 28, the dates from
which the georef1min01-03 data sets are included. The format function converts to timedate format of the
track relocation data.

> DateData<-seq(ISOdatetime(2009,07,14,00,00,00, tz="GMT"),ISOdatetime(2009,07,28,00,00,00,

+ tz="GMT"), by="min")

> head(DateData)

[1] "2009-07-14 00:00:00 GMT" "2009-07-14 00:01:00 GMT"

[3] "2009-07-14 00:02:00 GMT" "2009-07-14 00:03:00 GMT"

[5] "2009-07-14 00:04:00 GMT" "2009-07-14 00:05:00 GMT"

Next we need to make an array to hold the relocation data for the three tracks we want to plot. The
data are 15 days long and relocations are by the minute so

numrows<-15*24*60

numtracks<-3

numcols<-2 #Lat and Long data

#The 0 is what will fill the matrix temporarily

Bogswormdata<-array(0,c(numrows,numcols,numtracks))

14

data(georef1min01)

data(georef1min02)

data(georef1min03)

datafiles=list(georef1min01,georef1min02,georef1min03)

for(i in 1:3)

{

rawdata=as.data.frame(datafiles[i])

#this line determines the row(date and time) of DateData that the georef1min01

#track start on

matcher=1+as.double(abs(difftime(DateData[1],round(strptime(rawdata[1,1],format=

"%d-%b-%Y %H:%M:%S",tz="GMT"), units = c("mins")), tz="GMT",units="mins")))

nrows=nrow(rawdata)+matcher-1

for(j in 1:2)

{

#Inserts Lat and Long data into the data array

Bogswormdata[matcher:nrows,j,i]<-(rawdata[,(j+4)])

}

}

4.2 Function to make the graphs

The following is code to make the individual plots that are to be stitched together given the example data
above. It makes 360 individual plots. If you just want to see if it works, you can make fewer plots try for (j
in 100:150) or whatever you have time/patience for.

require(RColorBrewer)

data(bathymetry)

image.xyz=tapply(bathymetry$Depth, list(bathymetry$Long, bathymetry$Lat), unique)

Bathymetry.palatte<-colorRampPalette(brewer.pal(9, "Blues"),bias=3)

plotter=function()

{

for(j in 1:360)#360 is the number of hours

{

par(xpd=T,mar=c(5,5,4,2),bg="black")

image(x=as.numeric(dimnames(image.xyz)[[1]]),y=as.numeric(dimnames

(image.xyz)[[2]]), z=image.xyz,

col=c(rev(Bathymetry.palatte(100)),terrain.colors(100)),

breaks=round(c(seq(from=min(image.xyz),to=0,length.out=101)

,seq(from=max(image.xyz)/101,to=max(image.xyz),

length.out=100))),

axes=T,

xlab="Longitude",

ylab="Latitude",

cex.axis=2,

cex.lab=2,

col.ticks="white",

col.axis="white",

col.lab="white"

#xlim=c(-171.30,-171),

#ylim=c(56.0,56.30)

)

#Add date and time to graph

text(x=-165.5,y=51.5, DateData[(j*60+241)], col="white", cex=2)

points(Bogswormdata[(j*60):(j*60+480),2,],Bogswormdata[

(j*60):(j*60+480),1,],

15

pch=".",

cex=6

)

print(j)

}

}

The following is code that I used to color code the worms according to behavior and with the addition
of tracks from a second island, a legend at the top and slight di�erences in background shading to indicate
night and day (which actually turned into a rather annoying �ashing e�ect but I was too proud of the
accomplishment to admit that it actually made the graph worse). This example is just to show that there
is a lot you can add to these graphs, just add another column to each matrix in the array for the data that
you want.

#Code to shade for night

shade <- rgb(0, 0, 0, alpha=80, maxColorValue=255)

plotter=function()

{

for(j in 1:360)#360 is the number of hours

{

#plot the base map

par(xpd=T,mar=c(5,5,4,2),bg="black")

image(x=as.numeric(dimnames(image.xyz)[[1]]),y=as.numeric(dimnames

(image.xyz)[[2]]), z=image.xyz,

col=c(rev(Bathymetry.palatte(100)),terrain.colors(100)),

breaks=round(c(seq(from=min(image.xyz),to=0,length.out=101),

seq(from=max(image.xyz)/101,to=max(image.xyz),

length.out=100))),

axes=T,

xlab="Longitude",

ylab="Latitude",

cex.axis=2,

cex.lab=2,

col.ticks="white",

col.axis="white",

col.lab="white"

#xlim=c(-171.30,-171),

#ylim=c(56.0,56.30)

)

legend(-178, 60.5,

legend=c("Dive", "Rest", "Shake", "Spin","W-Spin"),

col = c("red","yellow","purple","orange","brown"),

text.col = c("red","yellow","purple","orange","brown"),

lty = c(1,1,1,1,1,1),

horiz=T,

bty="o",

box.col="white",

box.lty=0,

cex=2

)

#Night and Day shading

if(DateData[(j*60+240),2]==2)

{

rect(xleft=-177,xright=-163,ybottom=51,ytop=60,col=shade,border=NA);

}

16

#Add date and time to graph

text(x=-165.5,y=51.5, DateData[(j*60+241)], col="white", cex=2)

#plot Pribs tracks

points(Pribswormdata[(j*60):(j*60+480),2,],Pribswormdata[(j*60):

(j*60+480),1,],

col=ifelse(Pribswormdata[(j*100):(j*100+1000),4,]==1,"red"

,"black"),

col=ifelse(Pribswormdata[(j*60):(j*60+480),5,]==0,"red",ifelse(

Pribswormdata[(j*60):(j*60+480),5,]==1,"yellow",ifelse(

Pribswormdata[(j*60):(j*60+480),5,]==2,"purple",ifelse(

Pribswormdata[(j*60):(j*60+480),5,]==3,"orange",ifelse(

Pribswormdata[(j*60):(j*60+480),5,]==4,"brown","black"))))),

pch=".",

cex=4,

xlab="Longitude",

ylab="Latitude",

xlim=c(-169.11,-168.90),

ylim=c(54.0,54.4),

)

#plot Bogs tracks

points(Bogswormdata[(j*60):(j*60+480),2,],Bogswormdata[(j*60):(j*60+480),1,],

col=ifelse(Bogswormdata[(j*60):(j*60+480),5,]==0,"red",ifelse(

Bogswormdata[(j*60):(j*60+480),5,]==1,"yellow",ifelse(

Bogswormdata[(j*60):(j*60+480),5,]==2,"purple",ifelse(

Bogswormdata[(j*60):(j*60+480),5,]==3,"orange",ifelse(

Bogswormdata[(j*60):(j*60+480),5,]==4,"brown","black"))))),

pch=".",

cex=4,

xlab="Longitude",

ylab="Latitude",

xlim=c(-169.11,-168.90),

ylim=c(54.0,54.4),

)

print(j)

}

}

4.3 Dealing with the animation package

The following code creates the plots, saves them in a folder and stitches them together to make an HTML
movie. If you want to make a video, see the saveVideo function in the animation package. You will need to
download �mpeg.exe which can currently be found at http://�mpeg.org/ to make a video.

require(animation)

ani.options(

#subfolders will be made in this folder to store various things

outdir="C:\\filepath to where you want the video\\",

interval=0.1,

ani.width=1000,

ani.height=1000)

saveHTML(plotter())

If you happen to have a large number of pictures already, you can still stitch these together using a
di�erent function called im.convert but you need to download ImageMagik. Read the im.convert help page
for details. gm.convert does the same thing but requires the GraphicsMagik program, one might work better

17

than the other on your system. The following code is a little ridiculous if you have large numbers of pictures
you want to stitch together but sometimes ugly works.

setwd("G:\\file path where your images are")

ani.options(interval=0.1,

ani.width=1000,

nmax=500,

ani.height=1000,

convert = shQuote("c:/program files (x86)/imagemagick-6.8.0-Q16/convert.exe")

)

im.convert(c(#"Rplot*.png", output = "bm-animation1.gif")

"Rplot1.png","Rplot2.png","Rplot3.png","Rplot4.png","Rplot5.png",

"Rplot6.png","Rplot7.png","Rplot8.png","Rplot9.png","Rplot10.png",

"Rplot11.png","Rplot12.png","Rplot13.png","Rplot14.png","Rplot15.png",

"Rplot16.png","Rplot17.png","Rplot18.png","Rplot19.png"

)

, output = "bm-animation1.gif")

5 Appendix 1 PERL and DOS

One possible free source for PERL is this http://www.activestate.com/activeperl/downloads. Installing
should create a Perl folder in the directory at C:/Perl I keep all my Perl programs in this folder. See
http://www.anaesthetist.com/mnm/perl/Findex.htm for a starting tutorial on regular expressions in Perl
and sites such as http://regexpal.com for testing your code.

This �rst PERL program subsets between two dates as a rough cut to trim data to make the raw �le
smaller or in a batch �le to cut multiple trips out of a single tag deployment or to cut single trips into
multiple segments of a suitable size that the trackreconstruction package can handle. It is designed to do
the same thing as the Splitter R function in TrackReconstruction.

#!C:\Perl64\bin

#Subset data between two dates

The next four lines are for bachfile use

$srcfile= $ARGV[0]; #input file

$outfile= $ARGV[1]; #output file

$indate= $ARGV[2]; #start date

$outdate= $ARGV[3]; #end date

#The next four lines are an example for a single file this needs to

#look like your raw file date and time format, \t is the regex for tab

#$indate="12-Jul-2011\t16:19:49";

#$outdate="12-Jul-2011\t16:34:20";

#this file is the raw data

#$srcfile="C:\Users\Marine\Desktop\DR check\09A0570square2.csv";

#this output file is the new one the Program will create

#$outfile="C:\Users\Marine\Desktop\DR check\01.csv";

open(IN, $srcfile) or die "Cant open infile ... ";

open(OUTF, ">$outfile") or die;

#Some thought must be put into this number (16) as it is =RmL*Hz/2

#in the DeadReckoning function.

$tails=16;

$lineflag=1; # This is the number of rows of header on the original raw file

18

$lineflag1=0;

$lineflag2=0;

#This while loop goes line by line looking for the indate and outdate to

#determine what lines they are on

while (($line = <IN>) && ($lineflag2 ==0))

{

if($line =~ /$indate/)

{

$lineflag1= $lineflag;

}

if($line =~ /$outdate/)

{

$lineflag2= $lineflag+$tails;

}

$lineflag += 1;

}

$lineflag1=$lineflag1-$tails;

#These next two lines print line numbers in the command prompt

#window so you can see things are working.

print "$lineflag1";

print "$lineflag2";

open(IN, $srcfile) or die "Cant open infile ... ";

$lineflag=1;

#This next line is the header and should have these elements with

#perhaps Date and Time as one and optional Speed

#and possibly any other data you want to keep.

print OUTF "Date\tTime\tDepth\tMagSurge\tMagSway\tMagHeave\tAccSurge\tAccSway\t

AccHeave\r";

while (($line = <IN>) && ($lineflag<$lineflag2))

{

If the line is between the start and end dates and does not

#have excessive tabs (for my data that ment

#that the line was blank or had data I was not interested in

if(($lineflag >= $lineflag1) && ($lineflag <= $lineflag2) && ($line !~/.\t\t\t\t\t./))

{

print OUTF "$line";

}

#This section might work to stop the searching after the end date line was

#passed, speeding up the program.

if($lineflag>$lineflag2)

{

last;

}

$lineflag += 1;

}

close IN;

close OUTF;

I saved this as DD_GPS_Date.pl in the C:/Perl folder. Run it by opening the command prompt in

19

Windows, navigating to the C:/Perl folder. typing "cd\" will get you to the C: drive and then "cd Perl"

to get to that folder. Type "DD_GPS_Date.pl" and the �le will run and create the new �le.

5.1 Batch �les and �le management

If you have multiple �les you want to do this to, we need a batch �le. I've created a batch �le folder on the
C: drive but it doesn't matter where you keep these. Here is an example of what these look like except I
have all four arguments for each trip on a single line with a space between each argument.

:: DDGPS Date.bat

:: Starts Perl DD_GPS_Date.pl program to cut large files into smaller files

:: between GPS locations

::

CD\

CD Perl64

print(1)

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal01\trip01\01.csv"

"16-Jul-2009\t08:56:24" "21-Jul-2009\t00:31:21"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal01\trip02\02.csv"

"22-Jul-2009\t01:18:56" "28-Jul-2009\t09:45:22"

print(2)

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip01\01.csv"

"14-Jul-2009\t22:27:00" "19-Jul-2009\t14:30:01"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip02\02.csv"

"21-Jul-2009\t04:18:09" "26-Jul-2009\t10:53:28"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip03\03.csv"

"27-Jul-2009\t04:19:01" "27-Jul-2009\t17:13:33"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip04\04.csv"

"29-Jul-2009\t05:40:23" "02-Aug-2009\t22:33:45"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip05\05.csv"

"05-Aug-2009\t05:24:40" "08-Aug-2009\t09:49:49"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal02\trip06\06.csv"

"09-Aug-2009\t05:08:45" "11-Aug-2009\t22:30:52"

print(3)

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal03\trip01\01.csv"

"16-Jul-2009\t18:26:14" "22-Jul-2009\t06:21:11"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal03\trip02\01.csv"

"23-Jul-2009\t19:08:24" "28-Jul-2009\t16:15:49"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal03\trip03\01.csv"

"29-Jul-2009\t22:53:43" "04-Aug-2009\t14:36:26"

DD_GPS_Date.pl "C:\filepath\inputfilename.csv" "G:\filepath\animal03\trip04\01.csv"

"06-Aug-2009\t04:26:13" "11-Aug-2009\t01:22:16"

.

.

.

:: is the batch �le comment character. These �les are saved as *.bat �les and are started by simply
double clicking with a mouse, be careful, more than once I started these �les that way thinking that I was
just opening them in a text editor to edit, for that, right click and choose 'open with'. Each line is composed
of 4 arguments each of which is surrounded by quotes and a space between. The order of the arguments is
the same as that of the $ARGV[0] $ARGV[1] $ARGV[2] $ARGV[3] in the Perl program. "Input �le" "output
�le" "start date" "end date". In this example I had multiple trips for single raw data �les. The print(1),
print(2) and print(3) are just there to periodically print something on the command prompt screen so I know
things are still working and what �le the program is working on.

20

Now that we have single �les for an entire trip, we may want to further break these up into between-GPS-
�xes sized chunks. The same Perl program can do this but we require many batch �les of a similar format
to the one above to work through all the trips. Again, the "tails" number (RmL*Hz/2) is important when
doing this subsetting. The R programs in section 1.2 above can also do this if your machine can handle it.

:: DDGPS Date.bat

:: Starts Perl DD_GPS_Date.pl program to cut contiguous trips into smaller between GPS locations

::

CD\

CD Perl64

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-001.csv"

"16-Jul-2009\t08:56:24" "16-Jul-2009\t08:57:45"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-002.csv"

"16-Jul-2009\t08:57:45" "16-Jul-2009\t09:17:14"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-003.csv"

"16-Jul-2009\t09:17:14" "16-Jul-2009\t09:38:12"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-004.csv"

"16-Jul-2009\t09:38:12" "16-Jul-2009\t09:53:04"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-005.csv"

"16-Jul-2009\t09:53:04" "16-Jul-2009\t10:08:52"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-006.csv"

"16-Jul-2009\t10:08:52" "16-Jul-2009\t10:25:04"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-007.csv"

"16-Jul-2009\t10:25:04" "16-Jul-2009\t10:42:05"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-008.csv"

"16-Jul-2009\t10:42:05" "16-Jul-2009\t11:07:54"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-009.csv"

"16-Jul-2009\t11:07:54" "16-Jul-2009\t11:27:00"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-010.csv"

"16-Jul-2009\t11:27:00" "16-Jul-2009\t11:53:19"

...

...

...

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-228.csv"

"20-Jul-2009\t20:12:03" "20-Jul-2009\t20:58:04"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-229.csv"

"20-Jul-2009\t20:58:04" "20-Jul-2009\t22:41:49"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-230.csv"

"20-Jul-2009\t22:41:49" "20-Jul-2009\t23:46:41"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-231.csv"

"20-Jul-2009\t23:46:41" "21-Jul-2009\t00:05:24"

DD_GPS_Date.pl "C:\filepath\animal01\trip 01\01.csv" "C:\filepath\animal01\trip 01\01-232.csv"

"21-Jul-2009\t00:05:24" "21-Jul-2009\t00:31:21"

CD\

CD Batch

CD GPSBatch

CD Bogoslof

BG_01_02.bat

So for trip BG_01_01 I had 233 GPS locations (including the start and end GPS locations) that created
232 �les. It is not necessary to cut your �les at every GPS point that you have, in fact I do not recommend
it, but that would be the smallest subsetting that you could do and still allow the TrackReconstruction
package to georeference your track. The last �ve lines in this program simply navigate to the next batch �le

21

to get it started, so you just need to double click the �rst one to get all of them working. If you only want
to do one, then just comment out the last line. The real work in all of this is creating these batch �les.

5.2 Thinning the data

Sometimes you don't need the high resolution of data your tag collects. If you want to reduce (thin) the size
of your master �le this can be trivial and it can also be di�cult. If you have missing data, things become
more di�cult, if you don't have missing data, the following Perl script reduces a data set collected at 16 HZ
down to 1 Hz.

#!C:\Perl64\bin

Created November 5 2010 to remove all off-second data from Daily Diary tag output

$srcfile=$ARGV[0];

$outfile=$ARGV[1];

#$srcfile="C:\Users\Marine\Desktop\Antarctica\pup 252\GPS segments\trip 1\01-3.csv";

#$outfile="C:\Users\Marine\Desktop\Antarctica\pup 252\GPS segments\trip 1\01-3-2.csv";

open(IN, $srcfile) or die "Cant open infile ... ";

open(OUTF, ">$outfile") or die;

#This should be 1 less than the amount of data you want to thin, i.e. I want every 16th

#row starting with the first row after the header.

$count=15;

$count2=1;

while ($line = <IN>)

{

#This prints the header

if ($count2==1)

{

print OUTF "$line";

$count2=2;

}

#This prints every 16th line, good for 16Hz data

if ($count==16)

{

print OUTF "$line";

$count=0;

}

$count += 1;

}

print uno

close IN;

close OUTF;

If your database has missing data then you might want to try something like this that looks for unique
strings that occur. My �le had a string of 3 tabs that only occurred on the second (not for the 15 fractions
of a second in my 16Hz sampling rate), if you are lucky or more clever than me, your data will have a unique
string of characters that you can search for.

#!C:\Perl64\bin

Created April 7 2010 to remove all off-second data from Daily Diary tag output

$srcfile= $ARGV[0];

$outfile= $ARGV[1];

22

#$srcfile="G:\Bog 2009 Toughbook\2009 Data\Daily Diary\Bogoslof\Cu09BG4\09A0574tab.csv";

#$outfile="G:\Bog 2009 Toughbook\2009 Data\Daily Diary\Bogoslof\Cu09BG4\09A0574sec.csv";

#I do not remember what these next three lines do, probably not needed.

foreach $argnum (0 ..$#ARGV){

print"@ARGV$[argnum]\n";

}

open(IN, $srcfile) or die "Cant open infile ... ";

open(OUTF, ">$outfile") or die;

#you can use the following line to test to see if the program works without

#going through the entire data set.

#while (($line = <IN>) && ($count <= 1000))

while ($line = <IN>)

{

if ($line !~/.\t\t\t./)

{

print OUTF "$line";

}

}

close IN;

close OUTF;

Save one of these as a DDsec_red.pl and use this in a batch �le that looks something like this to reduce
many �les while you sleep.

:: DDsec_red.bat

:: Starts Perl sec_red.pl program to reduce large DD files to 1 sec samples

::

CD\

CD Perl64

DDsec_red.pl "C:\filepath\Cu09BG01\01.csv" "E:\filepath\Cu09BG01\01_1sec.csv"

DDsec_red.pl "C:\filepath\Cu09BG02\01.csv" "E:\filepath\Cu09BG02\01_1sec.csv"

DDsec_red.pl "C:\filepath\Cu09BG03\01.csv" "E:\filepath\Cu09BG03\01_1sec.csv"

DDsec_red.pl "C:\filepath\Cu09BG04\01.csv" "E:\filepath\Cu09BG04\01_1sec.csv"

DDsec_red.pl "C:\filepath\Cu09BG05\01.csv" "E:\filepath\Cu09BG05\01_1sec.csv"

.

.

.

.

GOOD LUCK!!!
THE END

23

